Lecture Notes for Abstract Algebra: Lecture 3

1 The integers

1.1 The integers

The set of integers is denoted by \mathbb{Z} and the naturals by \mathbb{N} . We take $\mathbb{N} = \{1, 2, 3, \dots\}$.

Well ordering principle: Any nonempty set of non-negative integers have a smallest element.

Proposition 1. (Division algorithm) If a, b are integers with b > 0, there exist integers q and r with $0 \le r < b$ such that a = bq + r.

Proof. Consider the non-empty set $S = \{a - bk | k \in \mathbb{Z} \text{ and } a - bk \ge 0\}$ and let r be the smallest element of S. Then r = a - bk for some integer k and $r \ge 0$. If $r = a - bk \ge b \Rightarrow a - b(k - 1) = r' \in S$ and r' < r, which contradicts the fact that r is the smallest element in S.

Definition 2. Let a, b integers (not both zero). We say that a divides b if there exist an integer c such that b = ca. We write that a|b. The greatest common divisor d of two integers a, b is a positive number satisfying:

- 1. d|a and d|b.
- 2. if d' is an integer such that d'|a and d'|b. Then d'|d.

The number d is denoted (a, b) = d or gcd(a, b) = d.

Remark 3. The relation $(\mathbb{Z}, |)$ is not symmetric $(x|y \text{ and } y|x \Rightarrow x = \pm y)$.

Definition 4. Let $n \ge 1$. We say that a is congruent to b mod n, written

 $a \equiv b \mod n$, if and only if n|a - b.

The relation \equiv is an equivalent relation on \mathbb{Z} and the associated partition is say to determine the congruence classes $\bar{x} \mod n$. The multiplication and addition on \mathbb{Z} descend to operations on the quotient \mathbb{Z}/\sim and we have the following properties:

- (a) The addition $\overline{x+y} = \overline{x} + \overline{y}$ has a neutral element $\overline{0}$.
- (b) Every element \bar{x} has an inverse $\overline{-x}$.
- (c) We respect associativity $\overline{x} + \overline{y+z} = \overline{x+y} + \overline{z} = \overline{x+y+z}$.

Proposition 5. Let a, b integers (not both zero). The greatest common divisor d =qcd(a, b) exist, is unique and can be expressed as a linear combination am + bn = dfor some integers $m, n \in \mathbb{Z}$.

Proof. Consider the non-empty set $S = \{ax + by \mid x, y \in \mathbb{Z} \text{ and } ax + by > 0\}$ and denote by d' > 0 the smallest element of S. The element d' is a linear combination d' = am + bn. Also:

Use the division algorithm for a and d'. If a = d'q + r, then r = a - q(ma + nb) < d'cannot be an element of S and therefore r = 0. We can do the same for b and obtain that d' divides both a and b.

Now if d'' is a common divisor of a and b, we will have that d'' divides also any integral linear combination of a, b. In particular d''|d'. Conclusion: d = d' is the gcd(a, b).

Euclid's algorithm: The gcd(a, b) = gcd(b, r), where a = bq + r and $0 \le r < b$.

Example 6. The gcd(24567, 2456) = gcd(2456, 7) = gcd(7, 6) = 1.

Definition 7. We say that a, b are relatively prime if gcd(a, b) = 1 or equivalently, if there are suitable $m, n \in \mathbb{Z}$ such that 1 = ma + nb.

Definition 8. The Euler function $\phi(n)$ denotes the numbers of integers in the set $\{1, 2, \ldots, n\}$ that are relatively prime to n.

Example 9. For instance $\phi(8) = 4$ since, in the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$, the numbers 1, 3, 5 and 7 are relatively prime to 8.

Definition 10. We say that a natural number p > 1 is prime if it is only divisible by 1 and itself.

Lemma 11. (Euclid's lemma) If a prime number p divides a product ab, where $a, b \in$ \mathbb{Z} , then either p|a or p|b.

Proof. Suppose that p divides ab and does not divide a. Then, the numbers a and pare relatively prime and there exist therefore integers x, y such that

$$ax + py = 1 \Rightarrow (ax + py)b = b \Rightarrow abx + pby = b.$$

Since the number p divides the product abx and the term pby, it must also divide the $\operatorname{sum} abx + pby = b.$

Theorem 12. (Fundamental theorem of Arithmetic) Any integer n > 1 can be written in the form $n = p_1^{n_1} \dots p_k^{n_k}$, where p_i are distinct primes and $n_i \ge 1$. The factorization is unique, except possible for the order of the factors.

 \square

Proof. Existence of prime factorization using Induction: It must be shown that every integer greater than 1 is either prime or a product of primes. First, 2 is prime. Then, by induction, assume the theorem is true for all numbers in the range 1 < x < n. If n is prime, there is nothing more to prove. Otherwise, the number n is the product of two numbers n = ab in the range 1 < a, b < n. Since both numbers a and b can be written as product of primes by induction hypothesis, the assertion is true also for the product n = ab.

Uniqueness using Infinite Descent: If there is a number n with two different prime factorization, say $n = p_1 p_2 \dots p_k = q_1 q_2 \dots q_j$, then, by Euclid's lemma, the prime p_1 will divide some of the q_i . But all q_i are prime numbers, hence they must be equal and there is a prime, for example q_1 , such that $q_1 = p_1$. If we simplify the expression by p_1 , we get a smaller number with two different prime factorizations $n/p_1 = p_2 \dots p_k = q_2 \dots q_j$.

1.2 Mathematical Induction and Infinite Descent

Induction: In order to prove that a property P = P(n) is true for all natural numbers $n \ge n_0$, we can prove:

- 1. $P(n_0)$ is True.
- 2. For all $k \ge n_0$, P(k) is True $\Rightarrow P(k+1)$ is also True.

In this way for example, if n_0 where to be $n_0 = 10$ and we will have proven steps (1) and (2), then we will have the validity of P for n_0 as well as the chain of implications:

 $P(n_0)$ is True $\Rightarrow P(n_0+1)$ is True $\Rightarrow P(n_0+2)$ is True $\Rightarrow \dots$,

that guarantees the validity of P for all natural numbers $n \ge n_0$.

Alternative or strong induction: In order to prove a property P = P(n) for all natural numbers $n \ge n_0$, we can prove:

1. $P(n_0)$ is True.

2. For all $k \ge n_0$, $P(k_0), \ldots, P(k)$ are True $\Rightarrow P(k+1)$ is also True.

Infinite Descent: In order to prove that a property P = P(n) is not satisfied by any positive integer, we can prove:

1. If the property P is true for the integer $n_0 > 0$, there exist $n_1 < n_0$, such that n_1 also satisfies P.

Practice Questions:

- **1.** Let p be a prime number. Prove that \sqrt{p} is irrational.
- **2.** Prove using induction (or otherwise) that for $\alpha \in \mathbb{R}$, such that $\alpha > -1$, we have:

$$(1+\alpha)^n \ge 1 + \alpha n \qquad \forall n \in \mathbb{N}.$$

- **3.** Prove the following properties for the function ϕ of Euler:
 - 1. $\phi(p) = p 1$.
 - 2. $\phi(p^k) = p^k p^{k-1}$.
 - 3. $\phi(nm) = \phi(n)\phi(m)$ for positive integers m, n with gcd(m, n) = 1.