
Lecture Notes for Abstract Algebra: Lecture 3

1 The integers

1.1 The integers

The set of integers is denoted by Z and the naturals by N. We take N = {1, 2, 3, . . . }.

Well ordering principle: Any nonempty set of non-negative integers have a smallest
element.

Proposition 1. (Division algorithm) If a, b are integers with b > 0, there exist inte-
gers q and r with 0 ≤ r < b such that a = bq + r.

Proof. Consider the non-empty set S = {a − bk |k ∈ Z and a − bk ≥ 0} and let r
be the smallest element of S. Then r = a − bk for some integer k and r ≥ 0. If
r = a− bk ≥ b⇒ a− b(k − 1) = r′ ∈ S and r′ < r, which contradicts the fact that r
is the smallest element in S.

Definition 2. Let a, b integers (not both zero). We say that a divides b if there exist
an integer c such that b = ca. We write that a|b. The greatest common divisor d of
two integers a, b is a positive number satisfying:

1. d|a and d|b.

2. if d′ is an integer such that d′|a and d′|b. Then d′|d.

The number d is denoted (a, b) = d or gcd(a, b) = d.

Remark 3. The relation (Z, |) is not symmetric (x|y and y|x ⇒ x = ±y).

Definition 4. Let n ≥ 1. We say that a is congruent to b mod n, written

a ≡ b mod n, if and only if n|a− b.

The relation ≡ is an equivalent relation on Z and the associated partition is say to
determine the congruence classes x̄ mod n. The multiplication and addition on Z
descend to operations on the quotient Z/ ∼ and we have the following properties:

(a) The addition x+ y = x̄+ ȳ has a neutral element 0̄.

(b) Every element x̄ has an inverse −x.

(c) We respect associativity x̄+ y + z = x+ y + z̄ = x+ y + z.
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Proposition 5. Let a, b integers (not both zero). The greatest common divisor d =
gcd(a, b) exist, is unique and can be expressed as a linear combination am + bn = d
for some integers m,n ∈ Z.

Proof. Consider the non-empty set S = {ax + by |x, y ∈ Z and ax + by > 0} and
denote by d′ > 0 the smallest element of S. The element d′ is a linear combination
d′ = am+ bn. Also:
Use the division algorithm for a and d′. If a = d′q + r, then r = a− q(ma+ nb) < d′

cannot be an element of S and therefore r = 0. We can do the same for b and obtain
that d′ divides both a and b.
Now if d′′ is a common divisor of a and b, we will have that d′′ divides also any integral
linear combination of a, b. In particular d′′|d′.
Conclusion: d = d′ is the gcd(a, b).

Euclid’s algorithm: The gcd(a, b) = gcd(b, r), where a = bq + r and 0 ≤ r < b.

Example 6. The gcd(24567, 2456) = gcd(2456, 7) = gcd(7, 6) = 1.

Definition 7. We say that a, b are relatively prime if gcd(a, b) = 1 or equivalently, if
there are suitable m,n ∈ Z such that 1 = ma+ nb.

Definition 8. The Euler function φ(n) denotes the numbers of integers in the set
{1, 2, . . . , n} that are relatively prime to n.

Example 9. For instance φ(8) = 4 since, in the set {1, 2, 3, 4, 5, 6, 7, 8}, the numbers
1, 3, 5 and 7 are relatively prime to 8.

Definition 10. We say that a natural number p > 1 is prime if it is only divisible
by 1 and itself.

Lemma 11. (Euclid’s lemma) If a prime number p divides a product ab, where a, b ∈
Z, then either p|a or p|b.

Proof. Suppose that p divides ab and does not divide a. Then, the numbers a and p
are relatively prime and there exist therefore integers x, y such that

ax+ py = 1⇒ (ax+ py)b = b⇒ abx+ pby = b.

Since the number p divides the product abx and the term pby, it must also divide the
sum abx+ pby = b.

Theorem 12. (Fundamental theorem of Arithmetic) Any integer n > 1 can be written
in the form n = pn1

1 . . . pnk
k , where pi are distinct primes and ni ≥ 1. The factorization

is unique, except possible for the order of the factors.
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Proof. Existence of prime factorization using Induction: It must be shown that every
integer greater than 1 is either prime or a product of primes. First, 2 is prime. Then,
by induction, assume the theorem is true for all numbers in the range 1 < x < n. If
n is prime, there is nothing more to prove. Otherwise, the number n is the product
of two numbers n = ab in the range 1 < a, b < n. Since both numbers a and b can be
written as product of primes by induction hypothesis, the assertion is true also for
the product n = ab.
Uniqueness using Infinite Descent: If there is a number n with two different prime
factorization, say n = p1p2 . . . pk = q1q2 . . . qj, then, by Euclid’s lemma, the prime
p1 will divide some of the qi. But all qi are prime numbers, hence they must be
equal and there is a prime, for example q1, such that q1 = p1. If we simplify the
expression by p1, we get a smaller number with two different prime factorizations
n/p1 = p2 . . . pk = q2 . . . qj.

1.2 Mathematical Induction and Infinite Descent

Induction: In order to prove that a property P = P (n) is true for all natural
numbers n ≥ n0, we can prove:

1. P (n0) is True.

2. For all k ≥ n0, P (k) is True⇒ P (k + 1) is also True.

In this way for example, if n0 where to be n0 = 10 and we will have proven steps (1)
and (2), then we will have the validity of P for n0 as well as the chain of implications:

P (n0) is True⇒ P (n0 + 1) is True⇒ P (n0 + 2) is True⇒ . . . ,

that guarantees the validity of P for all natural numbers n ≥ n0.

Alternative or strong induction: In order to prove a property P = P (n) for all
natural numbers n ≥ n0, we can prove:

1. P (n0) is True.

2. For all k ≥ n0, P (k0), . . . , P (k) are True⇒ P (k + 1) is also True.

Infinite Descent: In order to prove that a property P = P (n) is not satisfied by
any positive integer, we can prove:

1. If the property P is true for the integer n0 > 0, there exist n1 < n0, such that
n1 also satisfies P .

Practice Questions:
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1. Let p be a prime number. Prove that
√
p is irrational.

2. Prove using induction (or otherwise) that for α ∈ R, such that α > −1, we have:

(1 + α)n ≥ 1 + αn ∀n ∈ N.

3. Prove the following properties for the function φ of Euler:

1. φ(p) = p− 1.

2. φ(pk) = pk − pk−1.

3. φ(nm) = φ(n)φ(m) for positive integers m,n with gcd(m,n) = 1.
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