Lecture Notes for Abstract Algebra: Lecture 3

1 The integers

1.1 The integers

The set of integers is denoted by \mathbb{Z} and the naturals by \mathbb{N}. We take $\mathbb{N}=\{1,2,3, \ldots\}$.
Well ordering principle: Any nonempty set of non-negative integers have a smallest element.

Proposition 1. (Division algorithm) If a, b are integers with $b>0$, there exist integers q and r with $0 \leq r<b$ such that $a=b q+r$.

Proof. Consider the non-empty set $S=\{a-b k \mid k \in \mathbb{Z}$ and $a-b k \geq 0\}$ and let r be the smallest element of S. Then $r=a-b k$ for some integer k and $r \geq 0$. If $r=a-b k \geq b \Rightarrow a-b(k-1)=r^{\prime} \in S$ and $r^{\prime}<r$, which contradicts the fact that r is the smallest element in S.

Definition 2. Let a, b integers (not both zero). We say that a divides b if there exist an integer c such that $b=c a$. We write that $a \mid b$. The greatest common divisor d of two integers a, b is a positive number satisfying:

1. $d \mid a$ and $d \mid b$.
2. if d^{\prime} is an integer such that $d^{\prime} \mid a$ and $d^{\prime} \mid b$. Then $d^{\prime} \mid d$.

The number d is denoted $(a, b)=d$ or $\operatorname{gcd}(a, b)=d$.
Remark 3. The relation (\mathbb{Z}, \mid) is not symmetric $(x \mid y$ and $y \mid x \Rightarrow x= \pm y)$.
Definition 4. Let $n \geq 1$. We say that a is congruent to $b \bmod n$, written

$$
a \equiv b \bmod n, \text { if and only if } n \mid a-b .
$$

The relation \equiv is an equivalent relation on \mathbb{Z} and the associated partition is say to determine the congruence classes $\bar{x} \bmod n$. The multiplication and addition on \mathbb{Z} descend to operations on the quotient \mathbb{Z} / \sim and we have the following properties:
(a) The addition $\overline{x+y}=\bar{x}+\bar{y}$ has a neutral element $\overline{0}$.
(b) Every element \bar{x} has an inverse $\overline{-x}$.
(c) We respect associativity $\bar{x}+\overline{y+z}=\overline{x+y}+\bar{z}=\overline{x+y+z}$.

Proposition 5. Let a, b integers (not both zero). The greatest common divisor $d=$ $\operatorname{gcd}(a, b)$ exist, is unique and can be expressed as a linear combination $a m+b n=d$ for some integers $m, n \in \mathbb{Z}$.

Proof. Consider the non-empty set $S=\{a x+b y \mid x, y \in \mathbb{Z}$ and $a x+b y>0\}$ and denote by $d^{\prime}>0$ the smallest element of S. The element d^{\prime} is a linear combination $d^{\prime}=a m+b n$. Also:
Use the division algorithm for a and d^{\prime}. If $a=d^{\prime} q+r$, then $r=a-q(m a+n b)<d^{\prime}$ cannot be an element of S and therefore $r=0$. We can do the same for b and obtain that d^{\prime} divides both a and b.
Now if $d^{\prime \prime}$ is a common divisor of a and b, we will have that $d^{\prime \prime}$ divides also any integral linear combination of a, b. In particular $d^{\prime \prime} \mid d^{\prime}$.
Conclusion: $d=d^{\prime}$ is the $\operatorname{gcd}(a, b)$.
Euclid's algorithm: The $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$, where $a=b q+r$ and $0 \leq r<b$.
Example 6. The $\operatorname{gcd}(24567,2456)=\operatorname{gcd}(2456,7)=\operatorname{gcd}(7,6)=1$.
Definition 7. We say that a, b are relatively prime if $\operatorname{gcd}(a, b)=1$ or equivalently, if there are suitable $m, n \in \mathbb{Z}$ such that $1=m a+n b$.

Definition 8. The Euler function $\phi(n)$ denotes the numbers of integers in the set $\{1,2, \ldots, n\}$ that are relatively prime to n.

Example 9. For instance $\phi(8)=4$ since, in the set $\{1,2,3,4,5,6,7,8\}$, the numbers $1,3,5$ and 7 are relatively prime to 8 .

Definition 10. We say that a natural number $p>1$ is prime if it is only divisible by 1 and itself.

Lemma 11. (Euclid's lemma) If a prime number p divides a product ab, where $a, b \in$ \mathbb{Z}, then either $p \mid a$ or $p \mid b$.

Proof. Suppose that p divides $a b$ and does not divide a. Then, the numbers a and p are relatively prime and there exist therefore integers x, y such that

$$
a x+p y=1 \Rightarrow(a x+p y) b=b \Rightarrow a b x+p b y=b .
$$

Since the number p divides the product $a b x$ and the term $p b y$, it must also divide the sum $a b x+p b y=b$.

Theorem 12. (Fundamental theorem of Arithmetic) Any integer $n>1$ can be written in the form $n=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$, where p_{i} are distinct primes and $n_{i} \geq 1$. The factorization is unique, except possible for the order of the factors.

Proof. Existence of prime factorization using Induction: It must be shown that every integer greater than 1 is either prime or a product of primes. First, 2 is prime. Then, by induction, assume the theorem is true for all numbers in the range $1<x<n$. If n is prime, there is nothing more to prove. Otherwise, the number n is the product of two numbers $n=a b$ in the range $1<a, b<n$. Since both numbers a and b can be written as product of primes by induction hypothesis, the assertion is true also for the product $n=a b$.
Uniqueness using Infinite Descent: If there is a number n with two different prime factorization, say $n=p_{1} p_{2} \ldots p_{k}=q_{1} q_{2} \ldots q_{j}$, then, by Euclid's lemma, the prime p_{1} will divide some of the q_{i}. But all q_{i} are prime numbers, hence they must be equal and there is a prime, for example q_{1}, such that $q_{1}=p_{1}$. If we simplify the expression by p_{1}, we get a smaller number with two different prime factorizations $n / p_{1}=p_{2} \ldots p_{k}=q_{2} \ldots q_{j}$.

1.2 Mathematical Induction and Infinite Descent

Induction: In order to prove that a property $P=P(n)$ is true for all natural numbers $n \geq n_{0}$, we can prove:

1. $P\left(n_{0}\right)$ is True.
2. For all $k \geq n_{0}, P(k)$ is True $\Rightarrow P(k+1)$ is also True.

In this way for example, if n_{0} where to be $n_{0}=10$ and we will have proven steps (1) and (2), then we will have the validity of P for n_{0} as well as the chain of implications:

$$
P\left(n_{0}\right) \text { is True } \Rightarrow P\left(n_{0}+1\right) \text { is True } \Rightarrow P\left(n_{0}+2\right) \text { is True } \Rightarrow \ldots,
$$

that guarantees the validity of P for all natural numbers $n \geq n_{0}$.
Alternative or strong induction: In order to prove a property $P=P(n)$ for all natural numbers $n \geq n_{0}$, we can prove:

1. $P\left(n_{0}\right)$ is True.
2. For all $k \geq n_{0}, P\left(k_{0}\right), \ldots, P(k)$ are True $\Rightarrow P(k+1)$ is also True.

Infinite Descent: In order to prove that a property $P=P(n)$ is not satisfied by any positive integer, we can prove:

1. If the property P is true for the integer $n_{0}>0$, there exist $n_{1}<n_{0}$, such that n_{1} also satisfies P.

Practice Questions:

1. Let p be a prime number. Prove that \sqrt{p} is irrational.
2. Prove using induction (or otherwise) that for $\alpha \in \mathbb{R}$, such that $\alpha>-1$, we have:

$$
(1+\alpha)^{n} \geq 1+\alpha n \quad \forall n \in \mathbb{N}
$$

3. Prove the following properties for the function ϕ of Euler:
4. $\phi(p)=p-1$.
5. $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.
6. $\phi(n m)=\phi(n) \phi(m)$ for positive integers m, n with $\operatorname{gcd}(m, n)=1$.
